999 resultados para MOLECULAR ICE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 'discrete' (H2O)(16) cluster, featuring four basic cyclic nine-membered rings and a twelve-membered ring, illustrates a new mode of supramolecular association of water molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448-11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The taxonomic characterization of two strains of Antarctic ice algae, Chlamydomonas sp. ICE-L and Chlamydomonas sp. ICE-W, were analyzed on the basis of morphological and molecular traits. The results indicate that they are the same species and belong to Chlamydomonas (Chlorophyta). According to I SS rDNA and ITS-I sequences they are very close relatives of Chlamydomonas sp. Antarctic 2E9, if not identified as such. They belong to the 'monadina clade', Cd. monadina and Cm. subdivisa as the sister group, on the basis of 18S rDNA sequence. They occur in 'Chlamydomonas clade' according to rbcL sequencing and are close relatives of Cd. kuwadae. The ITS sequences of ICE-L and ICE-W are 1302 base pairs and 1300 base pairs in length, the longest Volvocales ITS sequences ever reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wideband far infrared (FIR) spectra of complex permittivity e(p) of ice are calculated in terms of a simple analytical theory based on the method of dipolar autocorrelation functions. The molecular model represents a revision of the model recently presented for liquid water in Adv. Chem. Phys. 127 (2003) 65. A composite two-fractional model is proposed. The model is characterised by three phenomenological potential wells corresponding to the three FIR bands observed in ice. The first fraction comprises dipoles reorienting in a rather narrow and deep hat-like well; these dipoles generate the librational band centred at the frequency approximate to 880 cm(-1). The second fraction comprises elastically interacting particles; they generate two nearby bands placed around frequency 200 cm(-1). For description of one of these bands the harmonic oscillator (HO) model is used, in which translational oscillations of two charged molecules along the H-bond are considered. The other band is produced by the H-bond stretch, which governs hindered rotation of a rigid dipole. Such a motion and its dielectric response are described in terms of a new cut parabolic (CP) model applicable for any vibration amplitude. The composite hat-HO-CP model results in a smooth epsilon(nu) ice spectrum, which does not resemble the noise-like spectra of ice met in the known literature. The proposed theory satisfactorily agrees with the experimental ice spectrum measured at - 7 degrees C. The calculated longitudinal optic-transverse optic (LO-TO) splitting occurring at approximate to 250 cm(-1) qualitatively agrees with the measured data. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Fas/APO-1-receptor associated cysteine protease Mch5 (MACH/FLICE) is believed to be the enzyme responsible for activating a protease cascade after Fas-receptor ligation, leading to cell death. The Fas-apoptotic pathway is potently inhibited by the cowpox serpin CrmA, suggesting that Mch5 could be the target of this serpin. Bacterial expression of proMch5 generated a mature enzyme composed of two subunits, which are derived from the precursor proenzyme by processing at Asp-227, Asp-233, Asp-391, and Asp-401. We demonstrate that recombinant Mch5 is able to process/activate all known ICE/Ced-3-like cysteine proteases and is potently inhibited by CrmA. This contrasts with the observation that Mch4, the second FADD-related cysteine protease that is also able to process/activate all known ICE/Ced-3-like cysteine proteases, is poorly inhibited by CrmA. These data suggest that Mch5 is the most upstream protease that receives the activation signal from the Fas-receptor to initiate the apoptotic protease cascade that leads to activation of ICE-like proteases (TX, ICE, and ICE-relIII), Ced-3-like proteases (CPP32, Mch2, Mch3, Mch4, and Mch6), and the ICH-1 protease. On the other hand, Mch4 could be a second upstream protease that is responsible for activation of the same protease cascade in CrmA-insensitive apoptotic pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Puumala virus (PUUV) is the causative agent of nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome. Finland has the highest documented incidence of NE with around 1000 cases diagnosed annually. PUUV is also found in other Scandinavian countries, Central Europe and the European part of Russia. PUUV belongs to the genus Hantavirus in the family Bunyaviridae. Hantaviruses are rodent-borne viruses each carried by a specific host that is persistently and asymptomatically infected by the virus. PUUV is carried by the bank voles (Myodes glareolus, previously known as Clethrionomys glareolus). Hantaviruses have co-evolved with their carrier rodents for millions of years and these host animals are the evolutionary scene of hantaviruses. In this study, PUUV sequences were recovered from bank voles captured in Denmark and Russian Karelia to study the evolution of PUUV in Scandinavia. Phylogenetic analysis of these strains showed a geographical clustering of genetic variants following the presumable migration pattern of bank voles during the recolonization of Scandinavia after the last ice age approximately 10 000 years ago. The currently known PUUV genome sequences were subjected to in-depth phylogenetic analyses and the results showed that genetic drift seems to be the major mechanism of PUUV evolution. In general, PUUV seems to evolve quite slowly following a molecular clock. We also found evidence for recombination in the evolution of some genetic lineages of PUUV. Viral microevolution was studied in controlled virus transmission in colonized bank voles and changes in quasispecies dynamics were recorded as the virus was transmitted from one animal to another. We witnessed PUUV evolution in vivo, as one synonymous mutation became repeatedly fixed in the viral genome during the experiment. The detailed knowledge on the PUUV diversity was used to establish new sensitive and specific detection methods for this virus. Direct viral invasion of the hypophysis was demonstrated for the first time in a lethal case of NE. PUUV detection was done by immunohistochemistry, in situ hybridization and RT-nested-PCR of the autopsy tissue samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Letter the results of an experimental investigation of 1 keV electron irradiation of a 1:1 ice mixture of NH3:CO2 at 30 K was made under ultrahigh vacuum (10(-9) mbar) conditions. Molecular products formed within the ice were detected and monitored using FTIR spectroscopy. The formation of ammonium ions (NH4+), cyanate ions (OCN-), CO was observed leading to the synthesis of ammonium carbamate (NH4NH2CO2). The consequences of these results for prebiotic chemistry in the interstellar medium and star forming regions are discussed. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methane and ethane are the simplest hydrocarbon molecules that can form clathrate hydrates. Previous studies have reported methods for calculating the three-phase equilibrium using Monte Carlo simulation methods in systems with a single component in the gas phase. Here we extend those methods to a binary gas mixture of methane and ethane. Methane-ethane system is an interesting one in that the pure components form sII clathrate hydrate whereas a binary mixture of the two can form the sII clathrate. The phase equilibria computed from Monte Carlo simulations show a good agreement with experimental data and are also able to predict the sI-sII structural transition in the clathrate hydrate. This is attributed to the quality of the TIP4P/Ice and TRaPPE models used in the simulations. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the origin of life on Earth has long fascinated the minds of the global community, and has been a driving factor in interdisciplinary research for centuries. Beyond the pioneering work of Darwin, perhaps the most widely known study in the last century is that of Miller and Urey, who examined the possibility of the formation of prebiotic chemical precursors on the primordial Earth [1]. More recent studies have shown that amino acids, the chemical building blocks of the biopolymers that comprise life as we know it on Earth, are present in meteoritic samples, and that the molecules extracted from the meteorites display isotopic signatures indicative of an extraterrestrial origin [2]. The most recent major discovery in this area has been the detection of glycine (NH2CH2COOH), the simplest amino acid, in pristine cometary samples returned by the NASA STARDUST mission [3]. Indeed, the open questions left by these discoveries, both in the public and scientific communities, hold such fascination that NASA has designated the understanding of our "Cosmic Origins" as a key mission priority.

Despite these exciting discoveries, our understanding of the chemical and physical pathways to the formation of prebiotic molecules is woefully incomplete. This is largely because we do not yet fully understand how the interplay between grain-surface and sub-surface ice reactions and the gas-phase affects astrophysical chemical evolution, and our knowledge of chemical inventories in these regions is incomplete. The research presented here aims to directly address both these issues, so that future work to understand the formation of prebiotic molecules has a solid foundation from which to work.

From an observational standpoint, a dedicated campaign to identify hydroxylamine (NH2OH), potentially a direct precursor to glycine, in the gas-phase was undertaken. No trace of NH2OH was found. These observations motivated a refinement of the chemical models of glycine formation, and have largely ruled out a gas-phase route to the synthesis of the simplest amino acid in the ISM. A molecular mystery in the case of the carrier of a series of transitions was resolved using observational data toward a large number of sources, confirming the identity of this important carbon-chemistry intermediate B11244 as l-C3H+ and identifying it in at least two new environments. Finally, the doubly-nitrogenated molecule carbodiimide HNCNH was identified in the ISM for the first time through maser emission features in the centimeter-wavelength regime.

In the laboratory, a TeraHertz Time-Domain Spectrometer was constructed to obtain the experimental spectra necessary to search for solid-phase species in the ISM in the THz region of the spectrum. These investigations have shown a striking dependence on large-scale, long-range (i.e. lattice) structure of the ices on the spectra they present in the THz. A database of molecular spectra has been started, and both the simplest and most abundant ice species, which have already been identified, as well as a number of more complex species, have been studied. The exquisite sensitivity of the THz spectra to both the structure and thermal history of these ices may lead to better probes of complex chemical and dynamical evolution in interstellar environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for cluster, solid, and liquid forms of water. Recent work has stressed the importance of DFT errors in describing dispersion, but we note that errors in other parts of the energy may also contribute. We obtain information about the nature of DFT errors by using a many-body separation of the total energy into its 1-body, 2-body, and beyond-2-body components to analyze the deficiencies of the popular PBE and BLYP approximations for the energetics of water clusters and ice structures. The errors of these approximations are computed by using accurate benchmark energies from the coupled-cluster technique of molecular quantum chemistry and from quantum Monte Carlo calculations. The systems studied are isomers of the water hexamer cluster, the crystal structures Ih, II, XV, and VIII of ice, and two clusters extracted from ice VIII. For the binding energies of these systems, we use the machine-learning technique of Gaussian Approximation Potentials to correct successively for 1-body and 2-body errors of the DFT approximations. We find that even after correction for these errors, substantial beyond-2-body errors remain. The characteristics of the 2-body and beyond-2-body errors of PBE are completely different from those of BLYP, but the errors of both approximations disfavor the close approach of non-hydrogen-bonded monomers. We note the possible relevance of our findings to the understanding of liquid water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interleukin 1beta (IL-1beta) cDNA was cloned from the red seabream (Pagrus major) by homology cloning strategy. A cDNA fragment was amplified by PCR using two degenerated primers, which were designed according to the conserved regions of other known IL-1beta sequences, and elongated by 3' ends and 5' ends RACE PCR to get the full length coding sequence of red seabream IL-1beta (RS IL-1beta). The sequence contained 1252 nucleotides that included a 5' untranslated region (UTR) of 84 bp, a 3' UTR of 410 bp and an open reading frame (ORF) of 759 nucleotides which could be translated into a putative peptide of 253 amino acids with molecular weight of 28.6 kD and putative isoelectric point pI of 5.29. The deduced peptide contained two potential N-glycosylation sites and an identifiable IL1 family signature, but lacked the signal peptide and the clear ICE cut site, which were common in other nonmammalian IL-1beta genes. The RS IL-1beta had the highest homology with piscine IL-1beta according to phylogenetic tree analysis. The transcript expression was detected in blood, brain, gill, heart, head kidney, kidney, liver, muscle and spleen in the pathogen challenged and healthy red seabream by RTPCR. Results showed that the RS IL-1beta mRNA was constitutively expressed in most of the tissues both in stimulated and un-stimulated fish, and the expression could be enhanced by pathogen challenging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All taxa endemic to the Qinghai-Tibet Plateau are hypothesized to have originated in situ or from immediately adjacent areas because of the relatively recent formation of the plateau since the Pliocene, followed by the large-scaled biota extinction and recession caused by the Quaternary ice sheet. However, identification of specific progenitors remains difficult for some endemics, especially some endemic genera. Nannoglottis, with about eight species endemic to this region, is one such genus. Past taxonomic treatments have suggested its relationships with four different tribes of Asteraceae. We intend to identify the closest relatives of Nannoglottis by evaluating the level of monophyly, tribal delimitation, and systematic position of the genus by using molecular data from ndhF gene, trnL-F, and ITS region sequences. We find that all sampled species of Nannoglottis are a well-defined monophyly. This supports all recent taxonomic treatments of Nannoglottis, in which all sampled species were placed in one broadly re-circumscribed genus. Nannoglottis is most closely related to the Astereae, but stands as an isolated genus as the first diverging lineage of the tribe, without close relatives. A tentative relationship was suggested for Nannoglottis and the next lineage of the tribe was based on the ITS topology, the "basal group," which consists of seven genera from the Southern Hemisphere. Such a relationship is supported by some commonly shared plesiomorphic morphological characters. Despite the very early divergence of Nannoglottis in the Astereae, the tribe must be regarded to have its origin in Southern Hemisphere rather than in Asia, because based on all morphological, molecular, biogeographical, and fossil data, the Asteraceae and its major lineages (tribes) are supposed to have originated in the former area. Long-distance dispersal using Southeast Asia as a steppingstone from Southern Hemisphere to the Qinghai-Tibet Plateau is the most likely explanation for this unusual biogeographic link of Nannoglottis. The 23-32-million-year divergence time between Nannoglottis and the other Astereae estimated by DNA sequences predated the formation of the plateau. This estimation is further favored by the fossil record of the Asteraceae and the possible time of origin of the Astereae. Nannoglottis seems to have reached the Qinghai-Tibet area in the Oligocene-Eocene and then re-diversified with the uplift of the plateau. The molecular infragenetic phylogeny of the genus identifies two distinct clades, which reject the earlier infrageneric classification based on the arrangement of the involucral bracts and the length of the ligules, but agree well with the habits and ecological preferences of its current species. The "alpine shrub" vs. "coniferous forest" divergence within Nannoglottis was estimated at about 3.4 million years ago when the plateau began its first large-scale uplifting and the coniferous vegetation began to appear. Most of the current species at the "coniferous forest" clade of the genus are estimated to have originated from 1.02 to 1.94 million years ago, when the second and third uprisings of the plateau occurred, the climate oscillated and the habitats were strongly changed. The assumed evolution, speciation diversity, and radiation of Nannoglottis based on molecular phylogeny and divergence times agree well with the known geological and paleobotanical histories of the Qinghai-Tibet Plateau. (C) 2002 Elsevier Science (USA). All rights reserved.